nnsight.modeling#
- class nnsight.modeling.language.LanguageModel(*args, config: ~transformers.configuration_utils.PretrainedConfig | None = None, tokenizer: ~transformers.tokenization_utils.PreTrainedTokenizer | None = None, automodel: ~typing.Type[~transformers.models.auto.modeling_auto.AutoModel] = <class 'transformers.models.auto.modeling_auto.AutoModelForCausalLM'>, **kwargs)[source]#
LanguageModels are NNsight wrappers around transformers language models.
- Inputs can be in the form of:
Prompt: (str) Prompts: (List[str]) Batched prompts: (List[List[str]]) Tokenized prompt: (Union[List[int], torch.Tensor]) Tokenized prompts: (Union[List[List[int]], torch.Tensor]) Direct input: (Dict[str,Any])
If using a custom model, you also need to provide the tokenizer like
LanguageModel(custom_model, tokenizer=tokenizer)
Calls to generate pass arguments downstream to
GenerationMixin.generate()
- config#
Huggingface config file loaded from repository or checkpoint.
- Type:
PretrainedConfig
- tokenizer#
Tokenizer for LMs.
- Type:
PreTrainedTokenizer
- automodel#
AutoModel type from transformer auto models.
- Type:
Type
- model#
Meta version of underlying auto model.
- Type:
PreTrainedModel